

Name: \qquad Date: \qquad

Step 1:

You will create clear instructions to describe to someone else the process of how you will find the probability of rolling a certain number on a dice.

Try to find the probability by rolling your dice at least 20 times and recording how many times you rolled your chosen number. Use the chart on the next page to help you.

What probability did you find? \qquad

Now describe what you did to calculate the probability of rolling your number on the die step-by-step so that someone else could repeat your method without seeing you do it. You should have at least 6 steps for someone to recreate! (You may not need to fill all 9 lines) (e.g. Flipping a Coin: Step 1: Pick up your coin. Step 2: Flip coin. ... etc.)

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
Trade instructions with a partner, are the results the same when you follow their instructions? (Do not do any steps that are not written down!) Why or why not?

Choose a number on the dice (between 1 and 6). The number I chose is: \qquad
Roll your dice $\mathbf{2 0}$ times and fill out the chart below as you go:

Roll \#	Number Rolled	Is it your number? $(\sqrt{ }$ or $X)$	Roll \#	Number Rolled	Is it your number? $(\sqrt{ }$ or $X)$
1.			11.		
2.			12.		
3.			13.		
4.			14.		
5.			16.		
6.			17.		
7.			19.		
8.			20.		
9.					
10.					

Count how many times you rolled your chosen number: \qquad

Calculate the probability of rolling your chosen number:

In $\mathbf{2 0}$ rolls I rolled the number \qquad
\qquad times. This means that the probability I chosen\# \# of times it was rolled
\qquad .

*Go back to page 1 to answer the rest of the questions

Step 2:
On your Chromebook, go to https://scratch.mit.edu/projects/237147913/ and click See inside Explore the program to understand what it does and answer the following questions:

What number is the program calculating the probability of rolling? How do you know?

In your own words, write down what steps the program does to calculate the probability: (It might not take all 9 lines)

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
Are the steps of the program the same as the steps you wrote for your die? How? How are they different?

Step 3:

a) Roll the dice on the program $\mathbf{1 0}$ times and record the probability given. Click Restart and repeat 5 times.

1. \qquad 2. \qquad 3. \qquad 4. \qquad 5. \qquad
b) Modify the code so that it will roll $\mathbf{1 0 0}$ times in a row on one click.

Roll the dice 100 times and record the probability given. Restart and repeat 5 times.

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad

How do the probabilities in a) compare to the probabilities in b)? Which one do you think is more accurate? Why do you think this is?

What do you think the theoretical probability is? Why?
\qquad
\qquad
\qquad

Describe how you would know what the theoretical probability is. Is there a formula? *Check with a teacher to make sure your formula is correct before moving on*
\qquad
\qquad
\qquad

What do you think the probability will be if you choose $\mathbf{2}$ numbers to count instead of just 1 ?
\qquad

Modify the code to find the probability of choosing two numbers. The two numbers I chose to explore the probability of are \qquad and \qquad .
The probability after 100 rolls was: \qquad $\%$.

Were you correct? Why or why not?

What could you do to increase the accuracy of the simulation?

Step 4:

We would like to know: If there are two tiles in a bag - one red and one blue - and you randomly pick a tile, put it back and pick again, what is the probability that you pick the red tile twice in a row?

Make an estimate for what you think the probability is and justify your answer:

On your Chromebook, go to: https://scratch.mit.edu/projects/237152318/

You will see that part of a program has been started to help answer this question. It is your job to put the coding blocks given to you together in order to finish the program. You only need to edit the "Button 2" (CHOOSE) sprite. All the blocks that you will need have been created and placed in the coding area, you do not need to create any more blocks. Any variables (orange) or math operations (green) that have numbers greater than zero are correct, any that are blank or are zero need to be filled in by you.

Broadcasts are messages that can be used to communicate between different sprites. Variables can be used to store a number that you will need for choosing a colour and calculating probability.

When you are finished the program should:

- Show the two tiles under the given titles "Pick 1" and "Pick 2" when "Choose" is clicked
- Show the probability of picking both red tiles
- As you click "Choose" multiple times the program will continue to calculate the probability until "Reset" is clicked.
*Hint: use the program from Step 2 to help guide you

When you have completed the program answer the following questions:

After many trials what does your program tell you the probability of picking two red tiles is?

Is this what you expected? Why or why not?

Explain in words what the theoretical probability of choosing two red tiles in a row is:
\qquad
\qquad
\qquad

Describe a general formula for how to find the theoretical probability: *refer to step 3*

OPTIONAL:
How do you think the probability of picking all red tiles would change if you picked from two tiles three times instead of twice (like you were doing above)?
*If you have time, modify your program so that it shows three tiles being chosen.
(to do this you will need to create a new sprite using the two tiles as examples, you will also need to add a new variable and change the yellow "if -- then" block, and don't forget to include your new variable in the "Reset" sprite's code! HAVE FUN!)

Then, think of your own probability question to answer!

Step 5:
Explore some of the following links to see what is possible with coding probability in Scratch! The possibilities range from simple to very complex. There are virtually no limits to what you can create!

Probability Tools (Dice and Coin): https://scratch.mit.edu/projects/17779923/
Probability Spinner: https://scratch.mit.edu/projects/742139/
Pascal's Triangle: https://scratch.mit.edu/projects/451972/
Yahtzee: https://scratch.mit.edu/projects/2611073/
Pig - A Dice Game: https://scratch.mit.edu/projects/1479420/

Describe a question/activity that you think using coding would be fun or helpful to explore:

