MATH + CODING, Grades 6-10 in a collaborative learning setting

by George Gadanidis, Western University

OVERVIEW

This session will introduce a research-based resource offering:

- low floor \& high ceiling tasks
- coding starting points to bring math to life dynamically
- conceptual surprises \& insights
- a revitalized classroom culture

Participants will receive a free PDF copy of the resource, Math + Coding Teams, Gr. 6-10.

If you find this resource useful, you may book a free 45-60 minute online session for your district leads \& teachers, and receive a free district licence.

PRESENTER

George Gadanidis is professor of mathematics education at Western University.

He has worked for many years in research and outreach classrooms in Ontario (as well as in Brazil), collaborating with educators to
 design mathematics experiences that offer students a sense of mathematical wonder.

You may see more about his work at imaginethis.ca

MATH + CODING TEAMS

USING THIS RESOURCE

Math + Coding Teams may be used in 2 complementary ways:

- For mathematics education, to bring math concepts and relationships to life dynamically through code.
- For computer science education, to introduce coding concepts in the context of solving mathematics problems.

The tasks may used as:

- Collaborative team activities.
- Extension or enrichment activities.
- Starting points for project-based learning.

Math + Coding Teams includes 2 Books:

- Book A (120 pages) is designed as a teacher resource. It contains: (a) Student Tasks \& (b) Teacher Notes (and solutions).
- Book B (56 pages) is designed as a student resource. It contains only the Student Tasks. Book B is intended as a resource that may be shared with students.

ORGANIZING TEAMS

- Teams of 2-4 students.
- A non-competitive atmosphere.
- Collaborative problem-solving.
- A sense of common purpose.
- No team member left behind.

A culminating sharing of learnings and wonderings.

LOW FLOOR, HIGH CEILING LEARNING

Math + Coding Teams tasks are designed to offer all students starting points for engaging mathematically and with code.

Tasks also offer opportunities for students to extend their learning by asking their own questions and using code to investigate new directions.

Keep the following in mind as you support students in their learning.

- Code that works. Notice that students are given some code that works.
- Solving puzzles. The activities often involve editing this code to create different representations, such as drawing dots for different triangular numbers, or drawing dots for different polygonal numbers (as shown on the right).
- Temptation to explain. There will be a temptation to explain the code to students, or to start by teaching them the different parts of code. Please let students learn by experiencing the pleasure of problem solving, surprise and insight.
- Understanding code. By solving such problems, students learn about the meaning and purpose of various code blocks, and start to learn how to write their own code.
- Understanding mathematics concepts. The code dynamically represents mathematical concepts and relationships. This brings math concepts to life, makes them manipulable, and gives them a tangible feel.
- Extending tasks. Encourage students to ask and
 investigate their own questions and, if they are interested, to work in more than one coding environment. Most tasks are presented in both Scratch and Python.

CONTENTS

Math + Coding Teams 4

1. Polygonal Numbers + Scratch

- Student Task
- Teacher Notes

2. Golden Ratio + Scratch

24
28
3.A Sumerian Triples + Scratch

- Student Task
- Teacher Notes
3.B Sumerian Triples + Python
- Student Task42
- Teacher Notes

4.A Infinity + Scratch
- Student Task

49

- Teacher Notes

50
4.B Infinity + Python

- Student Task
- Teacher Notes
enal CCB
mep वx्या
Satanoe ETHMP
品

Math: Growing patterns; geometric patterns; algebraic expressions; polygon properties
Scratch: Turtle graphics; repeat; sub-programs; variables; lists

Math: Growing patterns; geometric patterns; algebraic expressions; history
Scratch: Turtle graphics; repeat; sub-programs; variables; lists

Math: Side relationships of right triangles; "Pythagorean" triples; graphical representations; history; [complex numbers; vectors]
Scratch: Nested repeat; conditional statements; subprograms; variables; lists
Python: Lists; nested repeat; conditional statements; 2D plots; [3D plots]

Math: Visual representations of fractions; shrinking patterns; limit of an infinite series; history
Scratch: Turtle graphics; subprograms; variables; sprite motion

Python: repeat; variables; 2D plots; tabular output
5.A. Linear relations + Scratch

- Student Task59
- Teacher Notes 63
5.B Linear relations + Python- Student Task69
- Teacher Notes 73
6.A. Finding Primes + Scratch
- Student Task
- Teacher Notes
6.B Finding Primes + Python
- Student Task
- Teacher Notes

7.A Estimating Pi + Scratch- Student Task111
7.B Estimating Pi + Python
- Student Task 115 119
- Teacher Notes

Math: Linear \& non-linear relations; "operations" on linear equations; graphical representations of relations
Scratch: Nested repeat; conditional statements; subprograms; variables
Python: Lists; nested repeat; conditional statements; 2D plots

Math: Prime numbers; number theory; algebraic expressions; modulo arithmetic; history
Scratch: Repeat; conditional statements; sub-programs; variables; code efficiency; modulo arithmetic
Python: Lists; repeat; conditional statements; 2D plots; code efficiency; modulo arithmetic

Math: Meaning of Pi ; experimental probability
Scratch: Repeat; lists; conditional statements; subprograms; variables
Python: Lists; repeat; conditional statements; 2D plots

